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Rule-based evidence accrual system for image understanding

Nelson Marquina

Artificial Intelligence/Image Understanding Section
Honeywell Systems and Research Center

26I0 Ridgway Parkway, Minneapolis, Minnesota 55413

Te rain function of an evidence accrual system for image understanding is to
fequentially update information on scene objects based on new sensor data or on
nor-sensczy information such as intelligence. This paper presents a concept for
r..-qntially updating information on scene objects. Scene objects and background
tclutttr) are represented by attributec relational graphs in which nodes represent
orects of interest and arcs rei.esent inter-object relations. Dynamic
rec,jnitior/identafication of nodes is acomplished by a belief/disbelief measure. Our
experimental results with infrared images show improvements in natural scene object
recc,:,itio, over traditional image processing methods.

Horeywell Systems and Research Center, in a research contract with Air Force Office
of Scientific Research (AFOSW), is currently working with real time air-to-ground
1,FsqLnces of infrared (IR) and range images with the objective of recognizing and
identifying scene objects of interest.

Our approach to this problem is based on the notion of incremental acquisition of the
scene model. Automatic object screener systems operate on video image frames, extract
ob)tcts in a frame, and optimally classify these objects into objects and background
based on their statistical and semantic features. The performance of the system
(prot.abilities of false alarm and detection) depends on the quality of data and the image
seg.entors and the classifiers used by the system. The full potential of the segmentors
and the classifiers is often not achieved because of severe system noise.

Misclassification may be reduced by examining the extracted objects and the
classifier decisions on these objects over a sequence of image frames. 1, 2 This
approach is useful and effective when noise in the image understanding system results in
random noise in the processed image or random error in the feature values of the
extracted objects, and the noise or the error is uncorrelated from frame to frame. When
the image is noisy, an object may fail to meet the segmentation criteria of the system,
resulting in a misclassification. When the feature values of the extracted objects are
erroneous, there may be missed objects as well as false alarms, By accumulating
information from one frame to the next regarding the locations and the feature values of I
the extracted objects, improved misclassification and detection can be achieved. Some
reasons for the limitations of single-frame analysis approach are:

1. Objects in the scene may be occluded in any particular view.
2. Because of the high noise content of an air-to-ground IR image, it would be difficult

to interpret all the scene segments.
3. Errors in analyzing and interpreting an image may cr-ate errors and inconsistencies

in the scene description.

Our method involves using multiple views of the scene in a sequential manner. The
different views are obtained via sensor motion (e.g., flying airplane or helicopter)
and/or scene object motion (e.g., moying vehicles). A partial scene description using
Attributed Relational Graphs (ARG's) J,4 is derived from each frame. As each successive
frame is analyzed, the model of the scene is incrementally updated with infotr..ation
de.ri d from the current frame. The model is initially a crude representation cf the
scene in which some objects may have been recognized, but most of them remain buried in a
segment such as the case when background and object do not have high enough contralt,
noticeable texture differences or objects have not moved significantly. An important
aspect of dynamically updating the scene model as each frame is analyzed is the effective
uue of scene/image knowledge in the interpretation process,

particularly on methods and techniques for aggregating and mapping preliminary region,
boundary, and/or surface information into higher-level descriptions.
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T!e next uection presents attributed relational graphs in the context of natural - -"-

%C-r.e krntwedse representation. Later on we discuss how to update the scene mode' by
uz;r, belt,f/disbelief measures.

Seang Reprosontfltion using Oraph"

Relational graphs have been used in several applications such as chemical structure
description, picture encoding, relational data-base systems for pictures, network
representation, awitchirng theory, etc. The graph representation of imagea offers several
powerful capebilities that are useful for image understanding such as the proper handling "
of the actual dimensionality and hierarchy of the images, the topological invariance, and
the abilLt4 of having attributes (or features) attached to their nodes and arcs or
rtranches. 5,6 Generally speaking, an Attributed Relational Graph (ARG) is a data
structure defining an expected collection of objects, such as an outdoor scene, the '-'
expected visual attributes associated with the objects in the scene (each of which can
have ay. arsociated ARG such as a syntactic decomposition), and the expected relations
a ,uncl them. Por example, an outdoor scene can consist of classes *sky,' "hill,* 'road,,
*vehicle,* 'tree," and *background.* The class *vehicle* can have an ARG to represent
the different types of vehicles expected in the scenario under observation. Furthermore,
each type cf vehicle is decomposed into its major parts such as eongine,' *body,* etc.
The scene model represented by ARG's is sequentially updated by analyzing new frames.
The interpretation of scene objects is dynamically accrued over time and convergence of
interpretation yields the recognition of objects. The interpretation stage is performed
by a rule-Cased system composed of production rules representing domain-specific
knowledg- about the scenario under observation. The information available to the
rule-based system is composed of four classes: knowledge of form (shape, relative size,
etc.), spectral characteristics (IR signatures, texture measures, etc.), plausible
relations with other objects (convoy formation, on-road/off-road vehicles, etc.) , and
terporal profile (velocity, maneuverability, etc.). Interpretation rules relate image
events to knowledge events by providing evidence for or against an object-hypothesis.

&vigpnn. Acr

Decision sroothing techniques are utilized in object tracking systems to increase
OL]ect tracking recognition confidence and decrease false alarm rate. Typically,
statistical methods are employed in decision smoothing. These include accepting the near.
(average) or mode (majority) target type over time, or using probabilistic models such as
the Bayesian normal or binomial,

8 
to evaluate the likelihood of the various object

types based on sequential observations. Simple statistical approaches, such as the mean
and mode, suffer because they fail to account for auxiliary evidence of recognition
accuracy which may be available as a by-product of the detection, segmentation, -"-
classification, and tracking processes. Schemes which attempt to use hypothesis testing
theory 171 , 181 to accumulate recognition confidence are unsatisfactory because they rely
heavily upor assumptions of statistical models of the 'decision population* which tend
not to reflect the true nature of the observations. In particular, "evidence' for belief
in varioub object classifications ray come from several (statistically unrelated)
Lources. Thus, recognition of an object as a tank with 855 confidence does not generally
imply that the confidence of other object types is less or equal to 20%. If
classification was being done statistically on sets of features, it might well be the
caLt that we attribute different confidences to the distributions of different object
types in different feature spaces. In that case, classification results such as: 'tank,
Sib, APC, 45,' could make sense. Put another way, observation of 'tank, 55t' is not
necessarily equivalent to the conclusion 'not tank, 29%." To utilize Dayes theorem to
calculate the probability of Oclassification tank* given observed evidence (such as a set
of features or a geometric arrangement of object components), requires that we know the k7
probability of observing the evidence, given that the object is a tank. Yet the latter
iE precisely equivalent to the problem of modeling the object signature.

Ldck of well-specifLed mathematical mode1s confounds statistical accrual of .
classification confidence in many other areas of human endeavor including prediction of
e~ornoric trends, weather forecasting, and meCical diagnosis. Yet experts in these areas
a( often able to draw accurate conclusions on the basis of incremental (i.e.,
seciL.ntially obtained) observations of evidence relevant to their conclusions.
Er,crtiiffe and Buchanan 9 have devised a method for incremental accrual of classification
curfidence which is motivated by the techniques employed by human experts n medical
diagnosis. It was implemented originally in the NYCIN expert knowledge system 9, and is
now used routinely In the knowledge engineering field. The theory assumes that one can ..
formulate approximations for a priori and conditional probabilities, but instead of
trf-ating theme as strict statistical entities it uses them to determine
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mtcare* of *belief' and 'disbelief.' These belief measures are In turn used to detire
measures of confidence, and rules for incrementally updating both the belief and
confiaernc' measures are detailed.

The belief Measures, an they are implemented In expert knowledge systems, are not
time adaptive. That is, once some evidence for belief (or disbelief) In a hypothesis is
accrued, its significance and numerical value never decreases. in the export knowledge
applications, such as medical diagnosis or mineral prospecting, this makes sense. During
the time span of investigation, conditions are statics i.e., the disease or mineral
deposits do not change their characteristics. However, this is not true of object
signatures even over short time spans. Noise or low contrast may cause Isolated frame
mis-clssification. It Is desirable for the significance of this single observation to
decrease over time. We have adapted the basic knowledge engineering belief measures to
incorporate temporal context. Thus, hypotheses are formulated frame by frame, and time
constants have been added to the incremental updating rules for absolute belief meaures.

* Further temporal accrual of belief depends upon the gradient of the disbelief measure in
the time domain, and vice versa.

flelief ani Qnflfd.,i. &r . -

Suppose we have a set of possible object types T1, T2 ,..., Tne and a time sequence of
frames through which we have tracked an object. Assume that in frame io evidence eii is
observed which supports the hypothesis, hi,, that the tracked object is actually obj ect
type Tj. Assume also that confidence measure P(hij) and P(hij/eij) with

* p~hij) I. I
I .P(hij/e±j) L I

are calculated. P(hi j) is interpreted as the a priori confidence that in the i-th fraic,
the tracked object lET,, and P~hi,/ei1 ) is the conditional confidence that, after
Obsirving evidence eij in lrame i, the3 tra ked object is type Tj.

Define conditional measures of belief and disbelief that the tracked object in t..e
i-th frame is type Tj by:

Iif Pchi, ).I

ysit.1 ,e~ '= axtF~hii/eii) P(h 1i )l- P~hi1 ) i ~ ~
I-P(hi)i

r I if P(hij)~
viIPhi/iL-P(h iij P01il)ifPh)l

hotL that if MBRk~ij, eij) > 1, then, MD(hij, eij) 0 and vice versa. Thus, if the
ev idence, eij, increases belief in h-, then it cannot contribute to the disbeliei in

ti.Define absolute measures of b~elie5fand disbelief ir. the i-th frame by

IIf ND(h i)-l

[rB miARB~h if ftD(h I Vs~l

if IW(h ijl

Pb (. [MIDt 1..j -MD(h Ij e ij )IlID(t i) fMR1i)

wt.t-re A- 1--ND(b Ij 'tij) and a- I- PMe(h1i.e 1i and

%. S
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whert tk. ti.e constants,r and 15 are fixed real numbers, e( l,
l

e
g . I. Finally define the confidence that the tracked object is type Tj based on the

t ti(lnce accumulated through the i-th frame by

CFI t) P tB(hij) - XD(h 13 )

Then -1. CF( i.j) t 1.

ThiL follows because P(hij) and P(hlj/se ) are between G and 1. So, I KB ,S(hiij ej,) & .
and 0 L ND(hij/ejl) 1 1. From this we calculate 0 S 11(hi) £ 1 and 0 X 1D(hij) L I. in
order to implement the sequential fra.ie confidence sheme outlined before, it is
recessary to define a priori single frame confidence P(hi), and conditional single frame
cenfidenct. P hi /ei), which depends on the evidence for ii (the hypothesis that in 9.1.
i-th frar. the trached object is of type j) observed in the i-th frame. These measuies
age necessarily dependent on the method used for object segmentation, since evidence for
classification is derived during this process. We have developed ways of computing
P{ .i,

) 
and P r ij/eij) for syntactic and statistical classifiers.

SyntaLtic classification is based upor matching extracted target components to target
r 1..,,. 1. ,.oztance of components in the target model is given by weights wk, @.:.wki-,
Witt. Wk=l. Here, wk is the significance of matching the k-th component in the target
ncdel. Note that "matching* must reflect the relative geometry Of the target
cor por.(nt&. Then

matched missed
components components

defir es a prelixinary confidence in the partial match cf a candidate object to a target
model. If only m of N components in the candidate object were matched in the model, then
it itakes sense to reduce confidence in the match proportionately. The confidence c. are
ogtained by updating the initial value r as a function of frame number and then obtain
PC.1/Eij) by

P(hij/ei3 ) - r(cj)

wh,.,e r(x) is a one-to-one non-linear rescaling function which maps 1-1,11 onto (e,11 and
also mats 1/2,11 onto 11/2,11. Then ei3 , the evidence in the i-th frame tt.at supports
deiding in favor of target type Tj, is given by the match of the extracted cornonents to
tltce in the target model. Since we have a sequence of frames through which an object is
tracked, we define the a priori confidence in the first frame to be P(hit) - 1/(n +)
where n object types are possible. The n+l represents the 'probability' of non-target,'
csc that the tracked object necessarily matches one of the types. For the second frame,
define PL23)-P(hij/eij). In the i-th frame, >2 define

k-l

The F(hi) represents the weighted sum of historic evidence, up to the i-th frare, in
favor of the target being classified as type Tj.

For the case of a statistical classifer, segmentation results in a set of feature
values f- xl,...,x) rather than extracted components. A parametric and a non-parametric
s cheime for calculating P(hij/*ijl have been developed. They are currently under
experimental evaluation.

*. ., .
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An application of belief measures for decision smoothing over multiple frames has
L,.,*, presented. The same &cheme generalizes to update confidence in any entity tracked
though frames, providing Oa priori* and *conditional* confidences can be attached to the
entity at each frame. For instance, appearance of individual scene objects for syntactic
classification Is amenable to this process. Each object is matched against target p
models, and single frame confidence derived from the 'goodness-of-match." Another
example is confidence in tracked object velocity calculated between frame pairs. Single
frame (pair) confidence is calculated from agreement (or lack of it) between current
frame location and predicted location from the previous frame velocity vector.

A different set of applications of belief measures to image understanding exist which
ate not time dependent. (Setting the time factors for rule update, and . equal to zero
elixirateE time dependence in these rules.) Suppose that we wish to make a binary
decision about a property of an object in an image, such as 'round or not round', .zratch
or nGt matcn a model or template, 'component is merged or not', 'component is a fragment
or not%, etc. Suppose that we have a set of presumably independent mesures, each of
which captares some aspect of the decision, and to each of which is associated a
cunfidence measure between 0 and 1. For instance, a measure of roundness is given by
sraliest !SL "rom a circle, by the variance of the set of curvatures calculated at each
po(nt on the perimeter of the object, and also by the ratio of perimeter to pixel area.
F(ur each cf these mesures, a normalized scale of distance of the measure from that
pioduced by a circle can be calculated, yielding a confidence measure. The problem is to
a.cL.e tt.t strength of these various confidences to decide the total confidence in the"-
dtc¢ior 'circle--not circle." A solution is to order the measures arbitrarily ard treat
thc. at sequentially obtained information (even though they can be obtained In
j..rallel). Then the scheme outline in this paper (with time constants-(and 9 set to
zero) can be applied to yield a single confidence measure. This mesure can then be
thresholded to determine the binary decision.

It is also possible to consider morc complex combining schemes if more information,
suct. as degree of dependence of measures, or independent confirmation of a measure, is
available.

This research was supported by the Air Force Office of Scientific Research under
Lortract nuirter F49620-O3-C-0134.
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